KFC Server: interactive forecasting of protein interaction hot spots

نویسندگان

  • Steven J. Darnell
  • Laura H. LeGault
  • Julie C. Mitchell
چکیده

The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PredHS: a web server for predicting protein–protein interaction hot spots by using structural neighborhood properties

Identifying specific hot spot residues that contribute significantly to the affinity and specificity of protein interactions is a problem of the utmost importance. We present an interactive web server, PredHS, which is based on an effective structure-based hot spot prediction method. The PredHS prediction method integrates many novel structural and energetic features with two types of structura...

متن کامل

A feature-based approach to modeling protein–protein interaction hot spots

Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initi...

متن کامل

HotPoint: hot spot prediction server for protein interfaces

The energy distribution along the protein-protein interface is not homogenous; certain residues contribute more to the binding free energy, called 'hot spots'. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair pot...

متن کامل

Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the ce...

متن کامل

CCRXP: exploring clusters of conserved residues in protein structures

Conserved residues forming tightly packed clusters have been shown to be energy hot spots in both protein-protein and protein-DNA complexes. A number of analyses on these clusters of conserved residues (CCRs) have been reported, all pointing to a crucial role that these clusters play in protein function, especially protein-protein and protein-DNA interactions. However, currently there is no pub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008